Welcome

Hong Yan Department of Electronic Engineering City University of Hong Kong

Definition of Creativity

* oxforddictionaries.com

The use of imagination or original ideas to create something

- * wikipedia.com
 - A phenomenon whereby something new and valuable is created
- * education.com

How to define creativity is an age-old question

The kind of gift associated with a Michelangelo or Einstein

Key components

- * Originality
- * Significance

Theories of Creativity

Summary by Weisberg:

* Developmental

Developing over time; Interactions with people and environment

* Psychometric

Testing and measurements; Domain specific, different from IQ

* Economic

Influenced by market forces; Cost-benefit analyses

* Stage and componential process

A series of stages or components; Linear and recursive process

* Cognitive

Thinking; Association; Combination; Imagination; Expansion

Reference: Robert W. Weisberg, Creativity, Understanding Innovation in Problem Solving, Science, Invention, and the Arts, John Wiley & Sons, 2006.

Originality and Appropriateness

Diagram from reference: Mark Kilgour, Big C versus little c Creative Findings, Call for Creative Futures Conference Proceedings, Sanna Karkulehto and Kimmo Laine (eds), 2007.

Investment Theory of Creativity

Sternberg and Lubart: Creative people buy low and sell high

(buy high, sell low) (buy high sell high)(buy low, sell low) (buy low, sell high)

Buy low: Idea unknown, out of favor, encountering resistance Having growth potential Sell high: Idea workable, solving significant problem Idea becomes very popular later (sell high)

Reference: Robert J. Sternberg, The Nature of Creativity, Creativity Research Journal, 2006.

Aspects of Investment Theory

Intellectual abilities Knowledge Styles of thinking Personality Motivation Confluence

Reference: Robert J. Sternberg, The Nature of Creativity, Creativity Research Journal, 2006.

Originality and Significance

Creative R&D Work of Imaging Systems

	Drawing	
1544	Camera	Analog
1867	Movies	
1896	X-ray	
~ 1900	TV	
1975	Digital camera, Fax machine, Optical scanner	Digital
1981	HDTV, Video	
~ 1970	CT, MRI, DSA, etc	

Drawing

Image from http://www.picturedraw.co.uk/images/how_to_draw1.jpg

Cameras

1544 to 1558, ideas by Reiners Gemma Frisius and Giovanni Batista della Porta

1885, Kodak camera by George Eastman

Images from http://en.wikipedia.org/wiki/History_of_the_camera

Motion Pictures

1867, animated picture machine patented in US by William Lincoln

Images from http://inventors.about.com/library /inventors/blmotionpictures.htm X-Rays

1896, Wilhelm Conrad Röntgen discovered the X-ray

1901 Röntgen received Nobel Prize

Images from http://inventors.about.com/od/xyzstartinventions/a/x-ray.htm http://en.wikipedia.org/wiki/X-ray

X-Ray Machine

www.shutterstock.com · 124281973

www.shutterstock.com · 126598016

Television

Inventor: John Logie Baird Scottish engineer Launch year 1928

Images from http://en.wikipedia.org/wiki/Television

First TV Image

Images from http://inventors.about.com/od/tstartinventions/a/Television_Time.htm http://en.wikipedia.org/wiki/History_of_television

Digital Camera

1975, digital camera first built by Steven Sasson at Eastman Kodak

Images from http://en.wikipedia.org/wiki/Digital_camera

Creativity in Imaging System Development

High originality and significance Big market-forces and cost-effective solutions Knowledge in different areas needed: Optics, electronics, physics, memory, printing Interdisciplinary work Both theoretical and experimental work Association of different systems and processes Long period of R&D

Theories of creativity: Developmental, Economic, Stage and componential process, Cognitive

From X-Ray to CT

Images from http://en.wikipedia.org/wiki/X-ray and http://en.wikipedia.org/wiki/Radon_transform

Significance of 3D Imaging

Images from http://www.ablesw.com/3d-doctor/tutor11.jpg

Creative Work in CT Development

1896	X-Ray imaging
	2D information
1917	Mathematical transform by Johann Radon
	Quiet period
1950's	Theoretical formulation of CT by Allan Cormack
	Quiet period
1971	Actual CT built by Godfrey Hounsfield
	3D information
1979	Cormack and Hounsfield received Nobel Prize
Unpopu	llar idea \rightarrow Popular idea \rightarrow Useful products

First Magnetic Resonance Image

Fig. 8 Relationship between a three-dimensional object, its twodimensional projection along the Y-axis, and four one-dimensional projections at 45° intervals in the XZ-plane. The arrows indicate the gradient directions.

Fig. 2 Proton nuclear magnetic resonance reugenatogram of the object described in the text, using four relative orientations of object and gradients as diagrammed in Fig. 1.

Images from http://benbeck.co.uk/firsts/2_The_Human_Subject/scanningh.htm

Lauterbur's Paper on Zeugmatography (MRI)

Editor: Insufficiently wide significance for inclusion in Nature
Lauterbur: Resubmitted the paper and explained the importance
Reviewer: The example is a trivial one
Reviewer: Further evidence of the usefulness needed
Accept because of Lauterbur was already well-known
Lawyer: Patent not worthwhile
SUNY: Inability to identify potential market
Cannot license the technology to industry
Paul Lauterbur and Peter Mansfield received Nobel Prize

(30 years after the first image was published)

Reference: Amit Prasad, Imperial Technoscience, Transnational Histories of MRI in the United States, Britain, and India, MIT Press, 2014.

MRI Spin Warp Sequence

Image from http://www.hutch73.org.uk/MRI-imeth/spinwarp.html

The K-space Concept

K-space = 2D Fourier spatial frequency space

Signal sampling in image or spatial frequency domains

Theory well developed in signal processing and digital telecommunications

Images from http://img.springerimages.com/Images/ImagesMD/MRI/WATER_MRI0101-02-006.jpg and http://www.magnet.fsu.edu/education/tutorials/magnetacademy/mri/images/mri-scannercoils.jpg

Today's MRI Technology

Images from http://benbeck.co.uk/firsts/2_The_Human_Subject/scanningh.htm, http://thumbs.dreamstime.com/z/mri-scan-complete-real-upper-part-human-body-34800538.jpg, http://1.bp.blogspot.com/-iolzA-LE52Q/Tsk_kSA1BLI/AAAAAAA3dY/fSPIYcytymU/s1600/calcified+granuloma+CT+MRI.jpg

Creative Work in MRI Development

Learning from other fields Starting with unpopular ideas **Initial results may not be perfect** Significance may not be obvious initially **Overcoming resistance to new ideas** Having confidence with one's work Persistent in achieving one's goals

Double Helix Structure of DNA

Francis Crick, James Watson and Maurice Wilkins received Nobel Prize in 1962.

Images from http://www.astrochem.org/sci_img/dna.jpg and http://1.bp.blogspot.com/-PD7HkdoJsfY/T0xhoHvNZYI/AAAAAAACjM/N4YFypOwSwk/s1600/watsoncrick.jpg

Creative Research in DNA Structure

Edwin Chargaff's Rules:

1.
$$N_A = N_T, N_C = N_G$$

People though $N_A = N_C = N_G = N_T$

2. DNA composition different for different species

X-ray diffraction images obtained by Rosalind Franklin and Maurice Wilkins.

X-Ray Crystallography

William Lawrence Bragg and William Henry Bragg shared Nobel Prize in 1915 for discovery of Bragg's law in X-ray scattering.

Dorothy Crowfoot Hodgkin was awarded Nobel Prize in 1964 for her work on X-ray crystallography of biomolecules.

Dorothy Crowfoot Hodgkin worked on the structure of insulin for 34 years and publish it in 1969.

Image fromhttp://en.wikipedia.org/wiki/X-ray_crystallography#cite_note-85

Steve Jobs' View of Creativity

Creativity is just connecting things. When you ask creative people how they did something, they feel a little guilty because they didn't really do it, they just saw something. It seemed obvious to them after a while. That's because they were able to connect experiences they've had and synthesize new things. And the reason they were able to do that was that they've had more experiences or they have thought more about their experiences than other people.

Keywords: Connecting things

Apple's Products

Images from http://www.thegraphicmac.com/wp-content/uploads/web_apple-then-now.jpg and http://i.dailymail.co.uk/i/pix/2011/10/07/article-2046397-0E46062300000578-455_634x372.jpg

Apple's Success: Connecting Things

Introducing mouse as a pointing device Attractive design: combining arts and technology Putting music on portable devices Creating online music services Introducing multi-touch to mobile phones Tablet: bridging notebook and mobile phone

Summary

Two key components in creativity: **Originality and Significance Recognize and aim to solve significant problems** Learn from different fields **Deep understanding of the problems** Don't be afraid of trying unpopular methods Don't be afraid of resistance and setbacks Connect things, imagination, combination and expansion **Results may not be perfect initially Both theoretical and experiment work needed** Persistent in achieving one's goals

